مطالعه تجربی خواص خمشی و ارتعاشی آلومینیوم تقویتشده با کامپوزیت اپوکسی / الیاف شیشه
[1] A. Fereidoon, S. Memarian, A. Albooyeh, and S. Tarahomi, “Influence of mesoporous silica and hydroxyapatite nanoparticles on the mechanical and morphological properties of polypropylene,” Mater. Des., vol. 57, pp. 201–210, 2014, doi: 10.1016/j.matdes.2013.12.046.
[2] M. N. M. Merzuki, Q. Ma, M. R. M. Rejab, M. S. M. Sani, and B. Zhang, “Experimental and numerical investigation of fibre-metal-laminates (FMLs) under free vibration analysis,” Mater. Today Proc., no. xxxx, pp. 2–8, 2021, doi: 10.1016/j.matpr.2021.02.409.
[3] S. Dhar Malingam, F. A. Jumaat, L. F. Ng, K. Subramaniam, and A. F. Ab Ghani, “Tensile and impact properties of cost-effective hybrid fiber metal laminate sandwich structures,” Adv. Polym. Technol., vol. 37, no. 7, pp. 2385–2393, 2018, doi: 10.1002/adv.21913.
[4] S. Maraş, M. Yaman, M. F. Şansveren, and S. K. Reyhan, “Free Vibration Analysis of Fiber Metal Laminated Straight Beam,” pp. 944–948, 2018.
[5] S. M. R. Khalili, R. K. Mittal, and S. G. Kalibar, “A study of the mechanical properties of steel/aluminium/GRP laminates,” Mater. Sci. Eng. A, vol. 412, no. 1–2, pp. 137–140, 2005, doi: 10.1016/j.msea.2005.08.016.
[6] P. Kaleeswaran, K. M. Kiranbabu, and B. S. Kumar, “Fabrication of Fibre Metal Laminate (FML) and Evaluation of Its Mechanical Properties,” Int. J. Appl. Eng. Res., vol. 9, no. 26, pp. 8872–8874, 2014, [Online]. Available: http://www.ripublication.com/ijaer.htm.
[7] Y. Xia, Y. Wang, Y. Zhou, and S. Jeelani, “Effect of strain rate on tensile behavior of carbon fiber reinforced aluminum laminates,” Mater. Lett., vol. 61, no. 1, pp. 213–215, 2007, doi: 10.1016/j.matlet.2006.04.043.
[8] A. M. Mukesh and N. Rajesh Jesudoss Hynes, “Mechanical properties and applications of fibre metal laminates,” AIP Conf. Proc., vol. 2142, no. August, 2019, doi: 10.1063/1.5122456.
[9] H. Khoramishad, H. Alikhani, and S. Dariushi, “An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates,” Compos. Struct., vol. 201, no. March, pp. 561–569, 2018, doi: 10.1016/j.compstruct.2018.06.085.
[10] S. Feli and M. M. Jalilian, “Experimental and optimization of mechanical properties of epoxy/nanosilica and hybrid epoxy/fiberglass/nanosilica composites,” J. Compos. Mater., vol. 50, no. 28, pp. 3891–3903, 2016, doi: 10.1177/0021998315627198.
[11] A. R. Albooyeh, “The effect of addition of Multiwall Carbon Nanotubes on the vibration properties of Short Glass Fiber reinforced polypropylene and polypropylene foam composites,” Polym. Test., vol. 74, pp. 86–98, 2019, doi: 10.1016/j.polymertesting.2018.12.014.
[12] A. Albooyeh and A. Fereidoon, “The effect of mesoporous silica and carbon nanotube addition on the vibration properrties of polypropylene,” vol. 14, no. 1, 2014.
[13] A. Thiagarajan, K. Velmurugan, and P. P. Sangeeth, “Synthesis and mechanical properties of pistachio shell filler on glass fiber polymer composites by VARIM process,” Mater. Today Proc., vol. 39, no. xxxx, pp. 610–614, 2020, doi: 10.1016/j.matpr.2020.09.001.
[14] A. Vasudevan, B. N. Kumar, M. V. Depoures, T. Maridurai, and V. Mohanavel, “Tensile and flexural behaviour of glass fibre reinforced plastic - Aluminium hybrid laminate manufactured by vacuum resin transfer moulding technique (VARTM),” Mater. Today Proc., vol. 37, no. Part 2, pp. 2132–2140, 2020, doi: 10.1016/j.matpr.2020.07.573.
[15] A. Vlot, “Impact properties of Fibre Metal Laminates,” Compos. Eng., vol. 3, no. 10, pp. 911–927, 1993, doi: 10.1016/0961-9526(93)90001-Z.