Leveraging Koopman operator and Deep Neural Net-works for Parameter Estimation and Future Prediction of Duffing oscillators
[1] Hamel, “Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre
technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S,” ZAMM - J. Appl. Math.
Mech. / Zeitschrift für Angew. Math. und Mech., vol. 1, no. 1, 1921.
[2] B. O. Koopman, “Hamiltonian Systems and Transformation in Hilbert Space,” Proc. Natl. Acad. Sci., vol. 17, no.
5, 1931.
[3] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science (80-
. )., vol. 313, no. 5786, 2006.
[4] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of nonlinear dynamics,”
Nat. Commun., vol. 9, no. 1, 2018.
[5] K. Champion, B. Lusch, J. Nathan Kutz, and S. L. Brunton, “Data-driven discovery of coordinates and governing
equations,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 45, 2019.
[6] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynamics for model predictive control
in the low-data limit,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 474, no. 2219, 2018.
[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “2012 AlexNet,” Adv. Neural Inf. Process. Syst., 2012.
[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
[9] M. Shafiq and Z. Gu, “Deep Residual Learning for Image Recognition: A Survey,” Applied Sciences
(Switzerland), vol. 12, no. 18. 2022.
[10] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern Koopman Theory for Dynamical Systems,” SIAM
Rev., vol. 64, no. 2, 2022.
[11] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., vol. 656,
2010.
[12] C. Runge, “Ueber die numerische Auflösung von Differentialgleichungen,” Math. Ann., vol. 46, no. 2, 1895.
[13] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2015.
[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”
Proc. IEEE, vol. 86, no. 11, 1998.
[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, 1997.
[16] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A Data–Driven Approximation of the Koopman operator:
Extending Dynamic Mode Decomposition,” J. Nonlinear Sci., vol. 25, no. 6, 2015.
[17] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended dynamic mode decomposition with dictionary
learning: A data-driven adaptive spectral decomposition of the Koopman operator,” Chaos, vol. 27, no. 10, 2017