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Abstract 

The exploration of nonlinear dynamical systems holds significant importance across scientific 

and engineering disciplines, primarily for its applications in modeling real-world phenomena. 

Traditional methods employed for the analysis and prediction of the behavior of these systems 

typically involve intricate mathematical techniques and numerical simulations. This paper pre-

sents an innovative approach that combine the capabilities of the Koopman operator and deep 

neural networks to establish a linear representation of the Duffing oscillator. This newly de-

veloped methodology facilitates effective parameter estimation and the accurate prediction of 

the oscillator's future behavior. Moreover, the paper proposes a modified training procedure 

aimed at confining the Koopman operator to a linear layer within the neural network, as op-

posed to its application across the entire network. This synergy between the Koopman operator 

and deep neural networks not only simplifies the analysis of nonlinear systems but also paves 

the way for significant advancements in predictive modeling across diverse fields. 

Keywords: Koopman operator; Parameter estimation; Duffing oscillator; Nonlinear dynamical 

systems 

1. Introduction 

Nonlinear dynamical systems, recognized for their intricate and sometimes chaotic behavior, 

permeate the realms of natural phenomena and technological applications. They transcend the sim-

plicity of linear systems, giving rise to phenomena such as bifurcations, limit cycles, and chaotic 

attractors. These systems have long captivated the interest of scientists and engineers, presenting sub-

stantial challenges in understanding, characterizing, and predicting their trajectories. Across diverse 
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fields, from physics and biology to economics and engineering, nonlinear systems underscore the 

fundamental complexity of our world. 

At the heart of this intricate landscape lies the Duffing oscillator [1], an iconic archetype of 

nonlinear dynamical systems. Its versatility enables it to emulate a wide spectrum of behaviors, mak-

ing it a pertinent model for various physical phenomena. From capturing the subtle interplay of me-

chanical vibrations in structures subjected to external forces to mirroring the rhythmic patterns of 

biological oscillations, the Duffing oscillator encapsulates the essence of nonlinear dynamics. 

Traditionally, dissecting and forecasting the behavior of Duffing oscillators have relied on a 

combination of analytical techniques and numerical simulations. While these methods provide valu-

able insights, they often encounter limitations in handling nonlinear intricacies with precision. Ana-

lytical solutions may prove elusive and algebraically complex, especially for higher-dimensional or 

strongly nonlinear systems. On the contrary, numerical simulations, though powerful, demand exten-

sive computational resources and face challenges in long-term predictions due to inherent numerical 

errors and uncertainties. 

The Koopman operator [2], with its inherent structure involving a mapping to a higher dimen-

sion, a linear transformation, and an inverse mapping, bears resemblance to the structure of autoen-

coders [3]. Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton in [4] have developed a neural 

network deliberately tailored for conciseness and interpretability, with the specific aim of encapsu-

lating system dynamics within a low-dimensional manifold. They introduce nonlinear coordinates, 

which are identified through a modified auto-encoder, and under these coordinates, the dynamics of 

the system exhibit a global linearity property. Furthermore, they expand the concept of Koopman 

representations to encompass systems with continuous spectra, introducing an auxiliary network to 

efficiently parameterize continuous frequencies. This innovative approach establishes a bridge be-

tween deep learning models and decades of asymptotic research, offering a fusion of the advantages 

of deep learning with the capacity for physical interpretability provided by Koopman embedding. 

In a recent study, Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton 

[5] addressed the challenge of discovering governing equations from scientific data in data-rich fields 

lacking well-characterized quantitative descriptions. They utilized advances in sparse regression to 

identify both the structure and parameters of nonlinear dynamical systems from data, resulting in 

models that balance simplicity with descriptive power. To achieve this, they introduced a custom 

deep autoencoder network designed to uncover a coordinate transformation into a reduced space, 

simplifying the representation of dynamics. This innovative approach allows for simultaneous learn-

ing of governing equations and the associated coordinate system. They applied this technique to var-

ious examples of high-dimensional systems exhibiting low-dimensional behavior, creating a model-

ing framework that combines the flexibility of deep neural networks with the parsimonious nature of 

sparse identification of nonlinear dynamics (SINDY) [6]. 

While the sole use of a neural network proves accurate and meets our requirements, it does not 

guarantee the exclusive confinement of the Koopman operator to a designated linear layer. Conse-

quently, the entire network structure incorporates elements of mapping, linear transformation, and 

inverse mapping simultaneously. This challenges the utility of using the linear layer weight as a rep-

resentation of the system, as they only encapsulate a portion of the Koopman operator. To overcome 

these challenges, we introduce a novel approach that capitalizes on the synergy between the Koopman 

operator and Deep Neural Networks [7]–[9]. This groundbreaking fusion is aimed at converting the 

Duffing oscillator into a linearized representation, offering promising solutions to the intricacies en-

countered in traditional methods. By harnessing the computational power of deep learning and the 

Koopman operator's capability to provide a linear representation of nonlinear systems [10], our ap-

proach enables a more accurate Koopman linearized representation of system behavior. 

In the following sections, we first dig into the foundational principles of Koopman operator 

theory and the adaptability of deep neural networks. We show how their fusion forms a compelling 

framework for analyzing and predicting the behavior of Duffing oscillators. We outline the process 

of transforming Duffing oscillator dynamics into a linear representation and introduce a modified loss 
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function designed to enhance the generality of the Koopman linear representation of the dynamical 

system within this context. Through numerical simulations and comparisons with traditional methods, 

we demonstrate the efficacy of our approach in providing accurate predictions for the future behavior 

of Duffing oscillators. Finally, this work enriches our understanding of nonlinear dynamics and offers 

a powerful tool with transformative potential across scientific, engineering, and practical applications. 

For access to the project's code and resources, please refer to the GitHub repository available 

at: github.com/yriyazi/Koopman-Operator-and-Deep-Neural-Networks-ISAV2023/ 

2. Koopman operator and Its Application 

In recent years, the Koopman operator has emerged as a powerful mathematical tool that pro-

vides a fresh vantage point for studying dynamical systems. Rooted in functional analysis, the 

Koopman operator introduces a paradigm shift by transitioning the focus from the state space to the 

space of observable functions. Doing so allows us to view the system's evolution in a linear frame-

work, even when dealing with inherently nonlinear systems. This perspective offers a new lens 

through which we can gain insights into the dynamics of complex systems. 

2.1 Dynamical System Representation 

We consider a dynamical system described by a set of state variables 𝑥(𝑡), which evolve over 

time t . Mathematically, we can represent this as: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡) (1) 

where 

 𝑛 is the state vector dimension. 

 𝑥 ∈ ℝ𝑛 is the state vector representing the system's state variables. 

 𝑡 ∈ ℝ+ is time. 

 𝑓(𝑥):ℝ𝑛 → ℝ𝑛 is a vector-valued function describing how the state variables change over 

time. 

2.2 Koopman operator Transformation 

The Koopman operator, denoted as 𝒦, is an infinite-dimensional linear operator that acts on 

observables or functions of the state variables. Let 𝑔(𝑥) be such an observable. The Koopman oper-

ator maps this observable from the state space to a higher-dimensional space: 

 𝒦𝑔(𝑥) = 𝑔(𝑓(𝑥))   (2) 

where: 

 m  supposed to be infinite-dimensional but in numerical approximation a value will be as-

signed. 

 𝒦(. ):ℂ𝑚 → ℂ
𝑚

 is the Koopman operator Generator. 

 𝑔(𝑥):ℝ𝑛 → ℂ
𝑚

 is an observable or function defined on the state space. 

 𝑔(𝑓(𝑥)) represents the observable after the system evolves according to 𝑓(𝑥). 

2.3 Koopman operator in Discrete Time 

In discrete-time dynamical systems, the Koopman operator is applied at discrete time steps. For 

these systems Equation (2) may be represented as: 

 𝒦𝑔(𝑥𝑘) = 𝑔(𝑥𝑘+1)   (3) 

where: 

 𝑥𝑘 represents the state of the system at time 𝑘. 

 𝑥𝑘+1 represents the state of the system at the next time step 𝑘 + 1. 
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In Figure 1, an important relationship is apparent: the transformation of data 𝑥𝑡 from its low-

dimensional representation in Euclidean space to an infinite-dimensional Hilbert space is facilitated 

through the utilization of Koopman observables 𝑔(𝑥𝑡). Leveraging this Koopman transformation al-

lows for the mapping of 𝑦𝑡 to 𝑦𝑡+1 via a linear matrix transformation. Furthermore, employing the 

inverse Koopman observable mapping 𝑔−1(𝑦𝑡+1) enables the derivation of 𝑥𝑡+1. With the help of the 

Koopman operator 𝑓(𝑥𝑡) = 𝑔−1(𝒦 × 𝑔(𝑥𝑡)) = 𝑥𝑡+1 . 

 

Figure 1. Koopman operator Evolution and a discrete dynamical system. 

3. Coupling Koopman operators with Deep Neural Networks 

Deep neural networks have showcased remarkable abilities in approximating intricate functions 

and mastering complex patterns from data. One of the key challenges encountered in the realm of 

Koopman operators is the identification of suitable observable functions. In methods such as DMD 

[11], the observable function is typically the identity function, and in extended DMD (EDMD), ob-

servable functions take the form of polynomials or trigonometric functions. While these approaches 

are straightforward and accurate, they exhibit resilience to noise and initial conditions. 

 

Figure 2. Neural Network Diagram. 

In this study, we combine a deep neural network with the Koopman operator, thereby generat-

ing a linearized representation of the Duffing oscillator. This neural network effectively learns the 

intricate relationship between system parameters and observed behaviors, facilitating efficient pa-

rameter estimation. Moreover, the neural network undergoes training to predict the future trajectory 

of the Duffing oscillator, thereby equipping us with a valuable tool for forecasting system behavior. 

neural networks are not necessarily always better than feature crosses, but neural networks do 

offer a flexible alternative that works well in many cases. 

3.1 Data acquisition 

The Duffing oscillator is a dynamical system described by the following second-order differ-

ential equation: 
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𝑑2𝑥

𝑑𝑡2
+ 𝛿

𝑑𝑥

𝑑𝑡
+ 𝛼𝑥 + 𝛽𝑥3 = 𝛾 𝑐𝑜𝑠(𝜔𝑡) (5) 

where: 

 𝑥 represents the displacement of the oscillator from its equilibrium position. 

 𝛿  denotes the damping coefficient. 

 𝛼  is the linear stiffness coefficient. 

 𝛽 characterizes the nonlinearity in the system. 

 𝛾 is the amplitude of the external driving force. 

 𝜔 is the angular frequency of the driving force. 

Duffing oscillator solution is generated using the Runge-Kuta method [12] and the initial con-

dition for Solving the equation is 𝑥0 = 1.5 and 𝑣0 = −1.5. 

A normal distribution with noise in the range of [−0.5,0.5] is added to the data to simulate real-

world data. 

3.2 Data Normalization 

Given the nature of regression, it is advisable to normalize the data before training the neural 

network. This normalization is crucial because even small variations in the input data can lead to 

significant changes in the output, potentially reducing the model's robustness against changes in input 

conditions. In our approach, we employ data normalization before feeding it into the convolutional 

neural network (CNN) architecture. During this process, we pass the statistical properties of the data, 

such as its mean and variance, through the network. 

After the recurrent neural network (RNN) block, the data is remapped to its original statistical 

properties before being passed to the Rescaler Block. The purpose of the Rescaler Block is to further 

reduce the variation in the output, ultimately leading to a more stable and controlled model response. 

3.3 Structure  

The architecture of the model is shown in Figure 2. Neural Network  is structured around an 

Encoder-Decoder paradigm, which effectively captures the essence of complex dynamics. Specifi-

cally, the Encoder component is meticulously designed, featuring a sequence of Inception Blocks 

[13] in a convolutional neural network (CNN) [14]. These Inception Blocks serve as robust feature 

extractors, enabling the model to discern intricate patterns and relevant features from the input data. 

Following the Inception-based Encoder, a pivotal transformation takes place through a linear 

layer. This linear layer assumes a distinct role within the architecture, embodying the essence of the 

Koopman operator evolution function 𝒦. It is important to note that this linear layer operates without 

an activation function and bias, preserving the linear nature of the Koopman operator's transfor-

mation. 

Table 1. CNN parameters. Out hyperparameter is 20. 

 
Sequential  

Blocks 
In Channels  Out Channels  kernel size padding 

branch1x1 
Conv 1×1 1 out 1 0 

ReLU - - - - 

branch7x7 

Conv 1×1 1 out 1 0 

ReLU - - - - 

Conv 7×7 out out 7 3 

ReLU - - - - 

branch31x31 

Conv 1×1 1 out 1 0 

ReLU - - - - 

Conv 31×31 out out   15 

ReLU - - - - 

branch pool 

MaxPool1d 1 1 3 1 

- - - - - 

Conv 1×1 1 out 1 0 

ReLU - - - - 
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Transitioning from the Koopman operator layer, the architecture takes an intriguing turn with 

the integration of a two-layer Long Short-Term Memory (LSTM) [15] network. This LSTM compo-

nent acts as the Decoder, expertly leveraging its sequential memory to unravel the transformed line-

arized representation. This sequence-to-sequence modeling approach facilitates the reconstruction of 

the system's temporal evolution, a crucial aspect in capturing its intricate behaviors. 

3.4 Training 

The network is trained end-to-end, without the need for custom loss functions or specialized 

training algorithms. However, it is important to note that the evolution function of the Koopman 

operator does not remain confined solely to the Koopman part; instead, it spreads throughout the 

network. In a sense, the network operates as a black box, handling this evolution internally. 

To address this issue and restrict the Koopman operator's influence exclusively to the Koopman 

linear layer, a two-stage training algorithm has been proposed. In this algorithm, after each optimiza-

tion step: 

1. The weights of all layers except the Koopman Linear Layer are frozen. 

2. The output of the Koopman Linear Layer is calculated for time steps 𝑛0 to 𝑛𝐾𝑃𝐻 (KPH is the 

Hyperparameters and due to the cost of calculating matrix power 20 was selected). 

3. The weights of the Koopman Linear Layer are updated based on the linearity property. This 

update aims to minimize the prediction error of the nth output. 

 ∑ ℒ (𝑔(𝑥𝑛0
) × (𝑊𝐾𝑜𝑜𝑝𝑚𝑎𝑛

𝑛 )
𝑇

, 𝑔(𝑥𝑛 
) × (𝑊𝐾𝑜𝑜𝑝𝑚𝑎𝑛

 )
𝑇

)𝐾𝑃𝐻
𝑛   (4) 

By implementing this two-stage training process, we ensure that the Koopman operator's influ-

ence is confined and utilized specifically within the Koopman linear layer, enhancing the network's 

predictive accuracy and control. 

Table 2. Optimizer and loss parameters. 

    Stage 1 Stage 2 

Optimizer 

Type SGD SGD 

Learning Rate 5.00E-02 5.00E-04 

momentum 0.9 - 

 weight decay 1.00E-04 - 

loss Type MSE MSE 

4. Results and Discussion 

Numerical results demonstrate the effectiveness of the proposed approach. The combination of 

Koopman operator-based linearization and deep neural networks yields impressive results in terms 

of parameter estimation accuracy and future prediction. During the Networks training input horizon 

for extracting features was 200 previous samples. 

Throughout this paper, the numerical values are used:𝛼 = −1, 𝛽 = +1, 𝛿 = 0.3, and 

𝜔 =  1.2. Additionally, the initial conditions for the training dataset are set to 𝑥(0) =  1.5 [𝑚] and 

�̇�(0) = −1.5 [𝑚/𝑠]. Also, we study periodic and quasi-periodic responses of the Duffing equation 

by changing value of 𝛾. 

4.1 Periodic 𝜸 = 𝟎. 𝟐 [𝑵] 

For periodic oscillations, neural networks demonstrate an ability to effectively capture the un-

derlying oscillatory structure, yielding accurate predictions even in the presence of substantial noise. 

Figure 3 depicts various scenarios: a) illustrates the neural network's performance under normal 

training conditions, b) presents a similar scenario with an increased noise level, and c) represents a 

worst-case situation where noise completely overwhelms the available data, resulting in the network's 

inability to provide accurate predictions. 

In general, neural networks exhibit robustness against noise within a range spanning  (−1, +1). 
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Figure 3. Robustness against noise 𝛾 = 0.2 [𝑁]. 

4.2 Quasi-periodic 𝜸 = 𝟎. 𝟑𝟕 [𝑵] 

For quasi-periodic oscillations, akin to simple periodic ones, neural networks exhibit the ability 

to effectively capture the underlying oscillatory structure, leading to accurate predictions even in the 

presence of significant noise. 

Figure 4 delineates various scenarios: a) shows the neural network's performance under typical 

training conditions, b) illustrates a similar scenario but with an elevated noise level, and c) portrays a 

worst-case scenario where noise completely dominates the available data, resulting in the network's 

inability to provide precise predictions. 

Broadly speaking, neural networks demonstrate robustness against noise within a range of  

(−1, +1). 

 
Figure 4. Robustness against noise 𝛾 = 0.37 [𝑁]. 

4.3 Koopman Eigenvalues 

One of the drawbacks associated with Dynamic Mode Decomposition (DMD) [11] and Ex-

tended Dynamic Mode Decomposition (EDMD) methods [16] is the presence small number of 

Koopman operator eigenvalues. To address this issue, a radial basis function has been proposed in a 

previous study [17] to approximate the Koopman operator eigenvalues. 

In Figure 5, we present a plot of 1600 Koopman operator eigenvalues, demonstrating their di-

versity and their ability to capture various system behaviors. It is noteworthy that, in the study men-

tioned [16], these results were obtained for a free Duffing oscillator. Nevertheless, the results 

achieved through Deep Neural Networks surpass those obtained by other means. 

5. Conclusion 

In this research, our objective was to implement an Autoregressive self-supervising autoen-

coder utilizing a two-stage training process. The primary goal was to confine the Koopman operator 

to a specific layer within the network and assess its resilience to noise. In addition, we aimed to 
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predict the steady-state behavior of the system while ensuring that the network remains robust across 

different initial conditions, indeed with the same Duffing coefficient. 

The utilization of an autoregressive framework played a crucial role in enabling the network to 

generate predictions, akin to the capabilities demonstrated by large language models. 

Furthermore, in comparison to traditional methods such as DMD and EDMD, our approach 

yielded an increased diversity in the Koopman eigenvalues, even surpassing radial basis function 

(RBF) methods in this regard. 

 

Figure 5. Koopman Layer Eigen values. 
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