کنترل تحمل‌پذیر خطای مود لغزشی به همراه مشاهده‌گر یادگیری تکرارشونده و کنترل فعال ارتعاشات فضاپیمای انعطاف‌پذیر

پذیرفته شده برای ارائه شفاهی ، صفحه 1-10 (10) XML اصل مقاله (664.27 K)
کد مقاله : 1018-ISAV2023 (R1)
نویسندگان
1ایران، تهران، شهرک غرب، خیابان مهستان، خیابان هوافضا، پژوهشگاه هوافضا،1465774111، استادیار
2ایران، تهران، شهرک غرب، خیابان مهستان، خیابان هوافضا، پژوهشگاه هوافضا،1465774111، کارشناسی ارشد
3ایران، تهران، شهرک غرب، خیابان مهستان، خیابان هوافضا، پژوهشگاه هوافضا،1465774111، دانشیار
چکیده
در این مقاله به طراحی دو الگوریتم کنترل تحمل ‏پذیر خطای مبتنی ‏بر مشاهده ‏گر و کنترل فعال ارتعاشات به صورت همزمان جهت پایداری وضعیت فضاپیمای انعطاف‏ پذیر ناقص عملگر که در معرض اغتشاشات خارجی قرار گرفته، پرداخته شده است. دینامیک غیرخطی فضاپیما در قالب یک سیستم کاملا کوپل صلب-انعطاف‌پذیر با استفاده از رویکرد مودهای فرضی و اصل همیلتون استخراج شده است. جهت تخمین اختلاف گشتاور ناشی از خطای عملگر، یک مشاهده ‏گر یادگیری تکرار شونده توسعه یافته است. سپس، یک قانون کنترل تحمل‏پذیر خطای مود لغزشی مبتنی ‏بر ساختار تناسبی-انتگرالی-مشتقی برای تولید سیگنال‏های کنترلی با عملکرد مطلوب طراحی شده است. در نهایت، جهت کاهش ارتعاشات باقی‏مانده حین و پس از مانور، الگوریتم کنترلی فیدبک نرخ کرنش به طور همزمان با الگوریتم کنترل تحمل ‏پذیر خطا فعال‏سازی می‏شود. ویژگی اصلی رویکردهای کنترلی پیشنهادی، تضمین پایداری گلوبال سیستم حلقه بسته با استفاده از تئوری لیاپانوف است. شبیه‏ سازی‏ های عددی حاکی از آن است که سیستم توسعه یافته عملکرد مطلوبی در مقابل خطای عملگر، اغتشاشات خارجی و نامعینی ‏های دینامیکی دارد.
کلیدواژه ها
موضوعات
 
Title
.
Authors
مراجع

1. Z. Wang and Z. Wu, "Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts", Nonlinear Dynamics 81(1), 257-264, (2015).
2. C. Liu, et al., "Observer-based fault-tolerant attitude control for spacecraft with input delay", Journal of Guidance, Control, and Dynamics 41(9), 2041-2053, (2018).
3. H. Li and X. Lin, "Robust finite-time fault-tolerant control for dynamic positioning of ships via nonsingular fast integral terminal sliding mode control", Applied Ocean Research 122, 103126, (2022).
4. M. Van, M. Mavrovouniotis, and S.S. Ge, "An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators", IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(7), 1448-1458, (2018).
5. Z. Liu, et al., "Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures", Science China Information Sciences 64(5), 1-16, (2021).
6. D. Thakur, S. Srikant, and M.R. Akella, "Adaptive attitude-tracking control of spacecraft with uncertain timevarying inertia parameters", Journal of guidance, control, and dynamics 38(1), 41-52, (2015).
7. Q. Hu, "Robust adaptive sliding-mode fault-tolerant control with L2-gain performance for flexible spacecraft using redundant reaction wheels", IET control theory & applications 4(6), 1055-1070, (2010).
8. R. Chai, et al., "Dual-loop tube-based robust model predictive attitude tracking control for spacecraft with system constraints and additive disturbances", IEEE Transactions on Industrial Electronics 69(4), 4022-4033, (2021).
9. X. Wu, et al., "Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults", Acta Astronautica 178, 824-834, (2021).
10. A. Šabanovic, "Variable structure systems with sliding modes in motion control—A survey", IEEE Transactions on Industrial Informatics 7(2), 212-223, (2011). 

11. Q. Shen, et al., "Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft", IEEE Transactions on Control Systems Technology 23(3), 1131-1138, (2014).
12. B. Li, et al., "Observer-based fault-tolerant attitude control for rigid spacecraft"
, IEEE Transactions on Aerospace and Electronic Systems 53(5), 2572-2582, (2017).
13. C.-L. Wei, et al., "Universal predictive Kalman filter-based fault estimator and tracker for sampled-data non-linear time-varying systems"
, IET control theory & applications 5(1), 203-220, (2011).
14. E. Bernardi and E.J. Adam, "Observer-based fault detection and diagnosis strategy for industrial processes"
, Journal of the Franklin Institute 357(14), 10054-10081, (2020).
15. X. He, et al., "Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach"
, IEEE Transactions on Industrial Informatics 9(3), 1670-1679, (2013).
16. Q. Hou, et al., "Study on FDD and FTC of satellite attitude control system based on the effectiveness factor", in
2008 2nd international symposium on systems and control in aerospace and astronautics. IEEE, 2008.
17. Q. Wu and M. Saif, "Robust fault diagnosis for a satellite large angle attitude system using an iterative neuron PID (INPID) observer", in
2006 American Control Conference. IEEE, 2006.
18. Q. Wu and M. Saif, "An overview of robust model-based fault diagnosis for satellite systems using sliding mode and learning approaches", in
2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007.
19. M. Shahravi and M. Azimi, "Attitude and vibration control of flexible spacecraft using singular perturbation approach"
, International Scholarly Research Notices 2014, (2014).
20. T. Cao, et al., "A novel learning observer-based fault-tolerant attitude control for rigid spacecraft"
, Aerospace Science and Technology 128, 107751, (2022).
21. L. Zhang, C. Hua, and X. Guan, "Distributed output feedback consensus tracking prescribed performance control for a class of non‐linear multi‐agent systems with unknown disturbances"
, IET Control Theory & Applications 10(8), 877-883, (2016).
22. B. Bandyopadhyay, T.C. Manjunath, and M. Umapathy,
Modeling, control and implementation of smart structures: a FEM-state space approach, Vol, 350, Springer, 2007.