ارزیابی مدل‌های برازشی فرم ‌بسته برای رکوردهای نیرومند حوزه نزدیک حاوی اسپایک و پالس سرعت

پذیرفته شده برای ارائه شفاهی ، صفحه 1-10 (10) XML اصل مقاله (1.85 MB)
کد مقاله : 1010-ISAV2023 (R1)
نویسندگان
1دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران
2استادیار، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران
چکیده
جنبش‌های نیرومند زمین در هنگام زلزله‎‌های بزرگ و پرانرژی، با ایجاد حرکات ضربه‌ای در فواصل نزدیک گسل فعال، سبب ایجاد خسارات گسترده در ساختگاه‌‌ها و زیرساخت‌ها و سازه‌ها می‌شوند. این موضوع، اهمیت گسترش دیدگاه‌های مطالعاتی در خصوص ارزیابی رفتار و پاسخ لرزه‌ای اسکلت مقاوم سازه‌ها تحت این‌گونه جنبش‌های زمین را به روشنی نشان می‌دهد. در این پژوهش، یک مجموعه رکوردهای نیرومند زلزله حوزه نزدیک به منظور شبیه سازی و ساخت نگاشت فرم‌ بسته هم‌پایه، مورد بررسی و ارزیابی قرار گرفته است. تمرکز اصلی مطالعاتی بر شبیه‌سازی و برازش پالس اصلی و پیوسته سرعت است که دارای بیشترین سهم انرژی رکورد زلزله می‌باشد. همچنین، روند محاسباتی برازش‌های مربوطه نیز با توجه به مشخصات پالس پیوسته سرعت، همانند پریود پالس، بازه موجک اصلی، اسپایک‌های پرانرژی در پنجره های زمانی کوتاه مدت در پیش و پس از موجک اصلی پالس سرعت و نیز پردازش نمودار تجمعی تاریخچه آزاد شدن انرژی جنبشی متناظر با مولفه‌های افقی رکورد زلزله استوار گردیده است. تدوین ساختارهای فرم بسته در این مقاله، بر پایه بررسی موضوعی دو نگرش‌ ریاضی پارامتری از مراجع معتبر و آورده‌های مربوطه، همراه با ترکیب توابع نمایی و مثلثاتی صورت گرفته است. همچنین اعتبار برازش‌های انجام شده و مدل‌های فرم بسته هم‌پایه نیز بر مبنای حصول همپوشانی هر چه بیشتر برای نمودار تجمعی تاریخچه آزاد شدن انرژی جنبشی مربوط به رکورد واقعی زلزله و نگاشت برازشی متناظر بررسی شده است. طبق نتایج حاصل شده، همخوانی و برابری مناسب و کارآمدی در تاریخچه زمانی و ویژگی‌های محتوای فرکانسی برای نگاشت فرم بسته بدست آمده است. دیدگاه کاربردی ساخت مدل فرم بسته متناظر با رکوردهای حوزه نزدیک را می‌توان در شناخت و شبیه ‌سازی جنبش‌های پرقدرت ضربه‌ای زمین و همچنین ارزیابی رفتار اسکلت مقاوم سازه‌ها در هنگام رخداد زلزله‌های بزرگ در نظر گرفت.
کلیدواژه ها
موضوعات
 
Title
.
Authors
مراجع

 1. Ali, M.M. and Moon, K.S. (2007). “Structural developments in tall buildings: Current trends and future prospects”,
Architectural Science Review, 50 (3), 205-223.
2. MacRae, G.D. and Roeder, C. (2001). “Near-fault ground motion effects on simple structures”,
Journal of
Structural Engineering
, 127 (9), 996-1004.
3. Yang, D., Zhang, C., & Liu, Y. (2015). “Multi-fractal characteristic analysis of near-fault earthquake ground
motions”,
Soil Dynamics and Earthquake Engineering, 72, 12-23.
4. Puglia, R., Russo, E., Luzi, L., D’Amico, M., Felicetta, C., Pacor, F., & Lanzano, G. (2018). “Strong-motion
processing service: a tool to access and analyse earthquakes strong-motion waveforms”,
Bulletin of Earthquake
Engineering (Springer)
, doi:10.1007/s10518-017-0299-z
5. Chen, G., Liu, Y., Beer, M. (2023). “Identification of near-fault multi-pulse ground motion”,
Applied Mathematical
Modelling
, 117, 609-624.
6. Azhdarifar, M., Meshkat-Dini, A., Sarvghad-Moghadam, A., (2015). “Study on the seismic response parameters of
steel medium-height buildings with framed-tube skeleton under near-fault records”,
Electronic Journal of
Structural Engineering
, 15(1), 70-87.
7. Naeim, F. “The Seismic Design Handbook”, 2th Edition, Kluwer Academic Publisher
,2001.
8. Somerville, P.G., and Graves, R. (1993). “Conditions that give rise to unusually large long period ground motions”,
The Structural Design of Tall Buildings, 2(3), 211-232.
9. Somerville, P.G., Smith, N.F., Graves, R.W. and Abrahamson, N.A. (1997). “Modification of empirical strong
ground motion attenuation relations to include the amplitude and duration effects of rupture directivity”,
Seismological Research Letters, 68(1), 199-222.
10. Chopra, A.K., Chintanapakdee, C. (2001). “Response of sdof systems to near-fault and far-fault earthquake
motions in the context of spectral regions”.
Earthquake Engineering and Structural Dynamics, 30, 1769-1789.
11. Cui, X.Z., and Hong, H.P. (2020). “A time-frequency representation model for seismic ground motions”,
Bulletin
of the Seismological Society of America
, XX,1-18, doi:10.1785/0120200123
.
12جمع دار، مهشاد و مشکوه الدینی، افشین. ( .)1398ارزیابی مدلهای فرم بسته برازشی برای رکوردهای حوزه نزدیک در تحلیل پاسخ لرزهای سازه های بلند
مرتبه قاب خمشی محیطی،
یازدهمین کنگره ملی مهندسی عمران، شیراز.
13. Liu, Y.X., Cui, X.Z., Hong, H.P. (2022). “Stochastic modelling of the pulse-like near-fault ground motions with
time-frequency representation”,
Journal of Seismology, 26, 387-414, doi:10.1007/s10950-021-10064-7
14. Makris, N., Moghimi, G. (2022). “Response of seismic isolated structures with supplemental rotational inertia”,
Earthquake Engineering and Structural Dynamics, 51(12), 10.1002/eqe.3709.
15. Menun, C., Fu, Q. (2002). “An analytical model for near-fault ground motions and the response of sdof systems”,
7th US National Conference on Earthquake Engineering (7NCEE). Boston, Massachusetts.
16. Hoseini Vaez, S.R., Sharbatdar M.K., Ghodrati Amiri G., Naderpour H., & Kheyroddin A. (2013). “Dominant
pulse simulation of near fault ground motions”,
Earthquake Engineering & Engineering Vibrations, 12(2), 267-
278.
17. Peng, Y., Luo, C.H., Qiu, C., Kong, F. (2023). “Stochastic simulation of velocity pulses of near-fault ground
motions based on multivariate copula modeling”,
Probabilistic Engineering Mechanics, 72, 103434.
18. Sohrabifard, S., Mansoori, M.R., Meshkat-Dini, A., & Moghadam A.S. (2017). “Seismic response of asymmetric
Steel bundled tube resistant skeletons under near-field earthquake records”, 16th World Conference on Earthquake
Engineering, Santiago, CHILE.