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Abstract 

In the modern era, technology's undeniable impact on various industries is particularly promi-

nent in rotating machinery applications, including engine rotors and industrial turbomachinery. 

A common challenge in this domain is rotor imbalance, leading to detrimental consequences 

such as excessive vibrations, bearing wear, and machinery breakdowns. This study aims to 

investigate Jeffcott rotor dynamics through precise MATLAB modeling, intentionally intro-

ducing mass imbalance to simulate real-world scenarios accurately. A Vector-Balancing tech-

nique is employed to address this imbalance, and an Artificial Neural Network (ANN) is 

trained to proactively mitigate rotor imbalances, drawing upon the results obtained from the 

modeling process. This enables the ANN to effectively address rotor imbalances, enhancing 

the reliability and performance of rotating machinery applications. To validate the effective-

ness of this ANN-based approach in addressing rotor imbalance issues across various rotating 

machinery applications, physical validation is carried out using a physically constructed rotor 

model. The VIBXPERT device balances the physical model, confirming the reliability and 

efficacy of this approach. This research underscores the practical applicability of ANN-based 

strategies in effectively addressing rotor imbalance issues, ensuring the longevity and reliabil-

ity of diverse rotating machinery applications. 
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1. Introduction 

In today's industries, rotating machinery plays a pivotal role, but it often faces challenging con-

ditions such as heavy loads, high temperatures, and rapid speeds, making it prone to breakdowns [1]. 

These breakdowns can lead to reduced efficiency, significant economic losses, and even safety haz-

ards, necessitating immediate shutdowns in some cases [2].  
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One common issue causing breakdowns in rotating machinery is dynamic imbalance, where the 

center of mass of a rotating component is not aligned with its axis due to various factors like irregular 

casting, lack of concentricity, or foreign objects [3]. This imbalance generates centrifugal forces dur-

ing operation, resulting in undesirable vibrations, increased wear, decreased performance, and poten-

tially catastrophic failures [4]. To address dynamic imbalance, specific balancing techniques are used 

for rigid and flexible rotors, such as the Vector-Balancing Method for rigid rotors and the Influence 

Coefficient Method for flexible ones [5]. Renowned researchers like RAO, VANCE, CHILDS, and 

Parkinson have extensively discussed these techniques [6][7][8][9]. 

In recent times, Artificial Intelligence (AI) has made significant strides in mechanical systems 

and balancing techniques. AI, including Artificial Neural Networks, has been applied to improve the 

efficiency and accuracy of balancing processes in rotating machinery [10]. ANN can predict correc-

tion masses based on unbalanced responses, offering a faster and more automated solution to balanc-

ing [11]. Researchers have successfully employed ANN for diagnostics, instability control, fault pre-

diction, and fault diagnosis in rotating machines [12]. However, more studies need to be utilizing AI 

techniques for predicting correction masses and phase angles in balancing systems. 

This study focuses on balancing a Jeffcott rigid rotor supported by two ball bearings, utilizing 

the Vector Method and artificial neural networks for enhanced balancing. The method involves initial 

measurements of vibration signal amplitude and phase angle, then introducing a trial mass to the rotor 

and re-measuring these parameters. By comparing the initial and post-trial mass measurements, the 

correction mass value is determined based on phase differences [13]. An artificial neural network is 

trained using unbalanced responses and correction masses obtained through the Vector Method. This 

innovative approach can predict correction masses when unbalanced responses are input, significantly 

improving the balancing process. The method is validated by comparing predictions to physical ex-

periments on a fabricated rotor. It demonstrates its reliability in addressing rotor imbalance and its 

potential to enhance balancing processes for various rotating systems. 

2. Rotor-Bearing System Modelling 

The widely used model for analyzing unbalanced rotating bodies, named after its creator, H. H. 

Jeffcott, in 1919 [14], simplifies an unbalanced rotor into a linear system. It presents a linear model 

consisting of a substantial unbalanced disc in the center of an unsubstantial elastic shaft bedded in 

two rigid bearings. In its complete form, this model is described by four second-order differential 

equations representing four degrees of freedom. However, when simplifying the disc as a mass point, 

the rotor effectively exhibits only two degrees of freedom, allowing movement solely along the radial 

direction along horizontal and vertical axes. As the rotor rotates, the center of gravity follows a well-

known trajectory known as the orbit [15]. Fig. 1 illustrates a simplified dynamic representation of this 

rotor model, considering the flexural rigidity and damping of the bearings, which can be thought of 

as springs and dampers that move in sync with the rotor. Consequently, the rotor is connected to the 

ground via linear springs and dampers, and its motion in the 𝑦 ⃗⃗⃗   and 𝑧 ⃗⃗  directions is influenced by the 

time-varying radial components of the rotating force vector.  
 

 

Figure 1. Model of the Jeffcott-like rotor [16]. 
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The equations of motion are derived using the Lagrange operator by correctly identifying the 

forces acting on the system with respect to the generalized coordinates [17]. 
 

(1) (𝑚1 + 𝑀)�̈� + 𝐾𝑒𝑞𝑦𝑦 + 𝐶𝑒𝑞𝑦�̇� − 𝑚1𝜀𝜔(𝑡)2 𝑐𝑜𝑠 (∫𝜔(𝑡)𝑑𝑡 + 𝜑1

𝑡

0

) − 𝑚1𝜀�̇�(𝑡) 𝑠𝑖𝑛 (∫𝜔(𝑡)𝑑𝑡 + 𝜑1

𝑡

0

) 

(2) (𝑚1 + 𝑀)�̈� + 𝐾𝑒𝑞𝑧𝑧 +  𝐶𝑒𝑞𝑧�̇� −  𝑚1𝜀𝜔(𝑡)2 𝑠𝑖𝑛 (∫𝜔(𝑡)𝑑𝑡 + 𝜑1

𝑡

0

) + 𝑚1𝜀�̇�(𝑡) cos(∫𝜔(𝑡)𝑑𝑡 + 𝜑1

𝑡

0

) 

Where 𝑚1 is the unbalance mass, 𝑀 is the rotor mass, 𝐾𝑒𝑞𝑦 and 𝐾𝑒𝑞𝑧 are the equivalent stiffness 

coefficient along the 𝑦 ⃗⃗⃗  and 𝑧 ⃗⃗ direction, and 𝐶𝑒𝑞𝑦 and 𝐶𝑒𝑞𝑧 are the equivalent damping coefficient 

along the 𝑦 ⃗⃗⃗  and 𝑧 ⃗⃗ direction, 𝜀 is the radial displacement of the unbalance mass, 𝜔 is the angular        

velocity of the rotor, and 𝜑1 is the initial angular position of the unbalance mass. 

3. Experimental Setup and Procedure 

The experimental setup, depicted in Fig. 2, was designed to analyze an unbalanced Jeffcott 

rotor. It comprises a three-phase induction motor (Motogen 63-2B) connected to an aluminum shaft 

with two plexiglass disks for off-center mass placement, and it utilizes SKF6006 bearings for shaft 

support. An inverter (Teco-S310) was employed to convert municipal electricity to three-phase power 

to address the unavailability of industrial three-phase power. Additionally, a complete SolidWorks 

setup model was created to ensure precise design and alignment. 

The rotor, tested at 750 rpm (12.5 Hz) with unbalanced mass placed on the outer diameter of 

the disks (𝜀 = 150 mm), was monitored using a split CLD accelerometer sensor magnetically attached 

to the motor-side bearing in the vertical direction. Also, a laser-triggered optical was employed for 

vibration measurements and RPM monitoring. Ultimately, with the assistance of the VIBXPERT II 

device, correction mass and phase angle were determined, ensuring rotor balance and minimizing 

unwanted vibrations. 

 

  

Figure 2. SolidWorks prototype and experimental setup. 

4. Vector-Balancing Method and Solution Approach 

The balancing process comprises several steps, which encompass measuring the initial vibra-

tions, introducing a trial mass, gauging the secondary vibrations, and ultimately applying the correc-

tion mass. These individual steps will be examined in greater detail in the subsequent sections. 

4.1 Initial Conditions and Input Parameters 

In this study, the rotor bearing system was modeled using MATLAB 2020b  software with the 

help of information and characteristics of the constructed physical model. The rotor parameters em-

ployed in the modeling process are described in Table. 1. The length and diameter are such that the 

rotor can be considered a rigid structure, and the material employed simulates a common one in the 

industry. 
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Table 1. Rotor parameters. 

Rotor Parameters    
Length [𝐦]   0.6 

Diameter [𝐦]   0.03 

Mass Density [𝐤𝐠 𝐦−𝟑]   2830 

 

In this system, the dynamic coefficients of damping and stiffness used in the MATLAB mod-

eling are presented in Table. 2. These coefficients were determined through the Half-Power Band-

width method and by identifying the resonance frequency at each unbalanced state [18]. 
 

Table 2. Dynamic coefficients. 

System-Equivalent Dynamic Coefficients 
Stiffness Coefficients [𝐤𝐍 𝐦−𝟏] 

𝑲𝒆𝒒𝒚 𝑲𝒆𝒒𝒛 

39.525 37.002 

Damping Ratio 

𝜻𝒆𝒒𝒚 𝝃𝒆𝒒𝒛 

0.0135 0.0088 

 

In this modeling, the exponential change in rotational velocity of the shaft from a stationary 

state approximates the dynamic model to the actual state, as illustrated in Fig. 3. This approach en-

sures that the model closely represents the real-world behavior of the system. 

 

 

Figure 3. Rotor and shaft angular velocity. 

 

In the MATLAB software, the ode45 command was employed to solve the differential equa-

tions governing the vibrations described by Eqs. (1) and (2). The resulting outputs, which illustrate 

velocity versus time in the 𝑦 ⃗⃗⃗   and 𝑧 ⃗⃗  directions, are presented in Fig. 4. This simulation provides 

valuable insights into the system's dynamic response. 

 

 

  

 
      (a)         (b) 

Figure 4. Initial velocity in (a) 𝒚 ⃗⃗  ⃗ direction, (b) 𝒛 ⃗⃗  direction. 
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4.2 Trial Mass 

The initial step in the balancing process involves adding a trial mass at a radial distance of 𝜀 

from the disk's center and an angle 𝜃 to the system. Similar to Eqs. (1) and (2), the equations for the 

new system can be derived. Upon adding the trial mass, the system's vibration response changes, as 

depicted in Fig. 5. The primary goal is to determine the phase difference between the trial and unbal-

anced mass, equivalent to the phase difference between the old and new vibration signals. Based on 

this phase difference, the position of the unbalanced mass, which is essentially the unknown in the 

problem, can be determined. In practical applications, this is achieved using a tachometer, which is 

simulated in this code by generating a pulse signal. Consequently, the phase difference between the 

two signals is calculated concerning these pulses. 

 

 

  

 
      (a)         (b) 

Figure 5. Initial and secondary velocities in (a) 𝒚 ⃗⃗  ⃗ direction, (b) 𝒛 ⃗⃗  direction. 

4.3 Correction Mass 

After pinpointing the exact location of the equivalent unbalanced mass, the subsequent step 

involves computing the correction mass's magnitude. This calculation relies on the trial mass value 

and the amplitudes of the initial and secondary vibrations, and it can be accomplished using the fol-

lowing Eq. (3) and Fig. 6. 
 

(3) 𝐶𝑊 = (𝑇𝑊) ×
|�⃗� |

|�⃗� |
     

 

 

 

Figure 6. Vector-Balancing Method. 

 

Once the value of the correction mass is determined, it should be positioned precisely opposite 

the unbalanced mass, with a phase difference of 180 degrees. After adding the correction mass, the 

system's vibration can be observed, as depicted in Fig. 7. It is evident that the vibration level is sig-

nificantly reduced, and due to the accuracy of this performance, the results of vector-based balancing 

can be used for training the neural network model. 
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      (a)          (b) 

Figure 7. Initial, secondary, and final velocities in (a) 𝒚 ⃗⃗  ⃗ direction, (b) 𝒛 ⃗⃗  direction. 

5. Artificial Neural Network Balancing Methodology 

The novelty of the proposed balancing methodology in this study lies in its utilization of Arti-

ficial Neural Networks to balance rotors based on Vector-Balancing Method results. Neural networks 

are intricate, self-adaptive networks composed of interconnected elements known as neurons. While 

neurons perform fundamental computations, their interactions empower the ANN to learn from input 

data and corresponding outputs [19]. 

This research harnesses a Multilayer Perceptron Network, offering greater computational power 

than a single-layer neural network. It comprises an input layer, eight hidden layers, and an output 

layer. In the context of the balancing process, artificial intelligence and machine learning algorithms, 

such as neural networks, prove highly effective. Vibration measurements and system characteristics 

serve as inputs to a neural network, which, through machine learning techniques, can discern patterns 

in system vibrations and automatically compute the optimal balancing mass [20]. 

Training the neural network with the unbalanced responses obtained from mathematical mod-

eling of the rotor bearing system and correction masses derived from the Vector-Balancing technique 

enables the network to discover hidden patterns within the data and estimate the balancing mass value. 

Once trained, the neural network can be integrated into the balancing procedure. When inputting new 

data into the network, it computes the correction mass value as its output. This calculated balancing 

mass is then applied to the appropriate location within the system, thereby finalizing the balancing 

process. Using artificial intelligence and machine learning algorithms in the balancing process offers 

several advantages, including improved accuracy, faster processing times, and increased efficiency 

in system balancing. Furthermore, this approach enhances adaptability to system changes and dimin-

ishes the necessity for manual adjustments. 

5.1 Network Design 
Building a neural network model begins with having an adequate dataset for the training pro-

cess. In this study, a MATLAB-based modeling approach utilized a Vector-Balancing method. It was 

employed within a loop to randomly generate the unbalanced mass and its position at each stage while 

keeping the trial mass and its position constant. This process was iterated to generate 1000 data points, 

which were subsequently saved. For this operation, the Neural Net Fitting module in MATLAB was 

utilized. The first step in using this module involves specifying the inputs and targets. The primary 

and secondary vibration signal levels and their phase angles were designated as inputs in this case. 

Simultaneously, the correction mass, its phase angle, the final vibration signal level, and its phase 

angle were set as targets. The dataset was then divided into subsets, with 5% for testing, 20% for 

validation, and 75% for training. 

5.2 Artificial Neural Network Parameters 

In the learning process of this study, the Levenberg-Marquardt algorithm was employed as the 

optimization method. This algorithm, detailed in Haykin's book, is a widely used optimization tech-

nique for training artificial neural networks [21]. The Levenberg-Marquardt algorithm adapts the 

Gauss-Newton algorithm and combines the strengths of both the Steepest Descent and Gauss-Newton 

methods. Its primary objective is to minimize the error between the network's output and the desired 
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output by adjusting the synaptic weights [22]. Table. 3 describes the critical parameters used in train-

ing the artificial neural network during this learning stage. These parameters hold a pivotal role in the 

training process and significantly impact the network's convergence and accuracy. 

 

Table 3. Artificial neural network parameters. 

Artificial Neural Network Parameters    
Transfer function   Sigmoid function 

Rate of learning   0.05 

Increase factor of learning   1.05 

Performance goal   0.001 

Momentum   0.075 

Interactions   3,000 

6. Results 

To evaluate the performance of the neural network model developed in this study, a dataset 

consisting of 45 random data points within the input range of the neural network model was generated. 

Subsequently, the outputs for the correction mass and phase angle were compared between the mod-

eling performed in MATLAB and the neural network model, as depicted in Fig. 8. 

 

  
     (a)                                      (b) 

Figure 8. Comparison of (a) correction mass, (b) phase angle. 

 

To evaluate the neural network model's performance, a validation procedure was conducted 

using real-world conditions, wherein a physical model with an unbalanced mass of 15 grams and a 

phase angle of 130 degrees, rotating at a speed of 750 rpm, was balanced with the assistance of     

VIBXPERT. The results of this physical balancing experiment have been presented in Table. 4 and 

were compared to the predictions from the neural network model. 
 

Table 4. Comparison of experimental and neural network model results. 

 Experimental Results  ANN Model Results Relative Error [%] 

Correction Mass 𝟏𝟓. 𝟓𝟑 [𝐠𝐫] 𝟏𝟒. 𝟗𝟖 [𝐠𝐫] 𝟑. 𝟓𝟒 

Phase Angle −𝟓𝟏. 𝟔𝟗° −𝟒𝟗. 𝟗𝟗° 𝟑. 𝟐𝟖 

7. Conclusion 

In conclusion, this study aimed to improve the accuracy of outcome predictions in the field of 

rotor balancing by integrating advanced modeling techniques and machine learning approaches. A 

comprehensive model of the Jeffcott rotor was developed using MATLAB software, which incorpo-

rated dynamic force coefficients and employed vectorial balancing techniques. This model was the 
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foundation for training an ANN to predict the necessary correction data required for effective system 

balancing, including masses and angles. The ANN, configured with eight hidden layers and employ-

ing the Levenberg-Marquardt training algorithm, consistently demonstrated exceptional performance, 

maintaining an error rate well below the 0.1% threshold. The validation process, which involved 

using a physical model to simulate real-world conditions and the VIBXPERT for balancing, further 

verified the network's outstanding accuracy. 

These results highlight the promising potential of the ANN-based approach for practical rotor 

balancing applications. By bridging the gap between advanced modeling and machine learning, this 

research contributes significantly to advancing rotor balancing techniques. It underscores the critical 

role of incorporating cutting-edge technologies to improve outcomes in this field. As rotor systems 

play a vital role in various industrial applications, adopting such innovative methodologies promises 

to enhance their efficiency and performance. 
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