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Abstract 

We introduce a novel approach to enhance gearbox fault diagnosis by integrating Long Short-

Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs) for vibrational 

data analysis. Our method aims to improve fault detection accuracy, particularly in identifying 

subtle anomalies like broken teeth. Our methodology starts with Continuous Wavelet 

Transform (CWT) applied to the vibrational data to reveal crucial frequency-domain features. 

Concurrently, a CNN, using the Inception architecture, extracts spatial features. 

Simultaneously, LSTM networks capture temporal patterns. The unique feature representations 

from both the CNN and LSTM branches are fused, creating a holistic feature set incorporating 

spatial, material, and frequency-domain information. This integrated feature set is then 

classified using a fully connected neural network. Our method's effectiveness is rigorously 

validated through comprehensive experiments on a diverse dataset. The results demonstrate 

exceptional accuracy in identifying gearbox faults, even in the early stages. This research 

advances predictive maintenance, offering a precise and comprehensive approach to gearbox 

fault diagnosis. The model's ability to detect faults promptly empowers industrial operators to 

reduce downtime and operational costs. In conclusion, the fusion of LSTM and CNN 

architectures for vibrational data analysis holds promise for gearbox fault diagnosis, benefiting 

industries reliant on machinery reliability and operational efficiency. 

Keywords: Gearbox Fault Diagnosis; Long Short-Term Memory (LSTM); Convolutional 

Neural Networks (CNN); Continuous Wavelet Transform (CWT).  

mailto:fshirazi@ut.ac.ir


The 13th International Conference on Acoustics & Vibration (ISAV2023), Tehran, Iran, December 2023 

 

 

2 

1. Introduction 

         Gearboxes play a critical role in machinery, and their reliability is essential for uninterrupted 

industrial operations. Timely fault diagnosis is pivotal for preventing costly downtime and ensuring 

machinery longevity. Therefore, to guarantee safety, growing attention has been paid to fault 

diagnosis of gearboxes [1]. In previous methods, the aim was to develop a mathematical model to 

express specific faults, and some methods required prior knowledge for reasoning and diagnosis [2]. 

In modern problems, due to the complexity of engineering systems, developing a proper model is 

difficult[3]. Traditional machine learning algorithms have been widely used in the fault diagnosis 

field. Baraldi et al. [4] aimed to develop a diagnostic system for electric traction motor bearings in 

variable automotive conditions. Employing a hierarchical structure of K-Nearest Neighbors 

classifiers, this method selects relevant features from vibrational signals using a Multi-Objective 

optimization approach, showcasing its effectiveness across diverse operational conditions in 

experimental testing. These methods require manual feature extraction, relying heavily on human 

expertise.  

         In recent years, deep learning has grown rapidly, setting new performance standards. Chen et 

al. [5] used deep neural networks to effectively identify faults in rolling bearings, demonstrating their 

reliability in fault diagnosis, which is crucial for maintaining machinery performance and preventing 

mechanical failures. Jiang et al. [6] present an end-to-end learning-based system that directly learns 

fault features from raw vibration signals. The method employs a multiscale convolutional neural 

network (MSCNN) that simultaneously extracts multiscale features, enhancing feature learning and 

diagnosis performance. Chen et al. [7] proposed an effective method utilizing convolutional neural 

networks (CNN) and discrete wavelet transformation (DWT) to diagnose fault conditions in planetary 

gearboxes used in wind turbines. Gao et al. [8] introduced an optimized adaptive deep belief network 

for rolling bearing fault diagnosis. The paper concludes with empirical validation through simulations 

based on experimental data, confirming the efficacy of the proposed method in bearing fault 

identification. Liang et al. [9] introduced WT-IResNet, a novel fault diagnosis method for rolling 

bearings based on wavelet transform and improved ResNet architecture. It effectively addresses noisy 

labels and real-world industrial conditions through wavelet transform, an improved residual neural 

network, and a customized loss function. Xiao Et al. [10] proposed a novel fault diagnosis method 

for three-phase asynchronous motors using LSTM neural networks, which learn from raw data 

without feature engineering. Experimental tests demonstrate superior accuracy compared to 

traditional methods like LR, SVM, MLP, and RNN. 

        This study presents an innovative approach to gearbox fault diagnosis, combining LSTM and 

CNN. Vibrational data collected under both healthy and faulty conditions is analyzed, focusing on 

identifying broken teeth as a common fault scenario. This method begins with Continuous Wavelet 

Transform (CWT) applied to the data, which is then processed by CNNs to extract spatial features. 

Simultaneously, LSTM networks capture temporal dependencies within the data. The resulting 

features from both networks are stacked and used for classification. This integration of LSTM and 

CNN, along with feature fusion, holds promise for accurate gearbox fault diagnosis. This research 

contributes to predictive maintenance, enhancing machinery reliability. In the following sections, we 

present the theoretical background, our methodology, experimental findings, and discussions, 

evaluating the approach's effectiveness in gearbox fault diagnosis. 

2. Theoretical Foundation 

2.1 Continuous Wavelet Transform: 

The Continuous Wavelet Transform (CWT) [11] is a mathematical technique employed to 

analyze signals in both the time and frequency domains simultaneously. It provides a way to examine 

how the frequency content of a signal evolves. This is particularly useful when dealing with non-

stationary signals, where the signal's characteristics change over different time intervals. CWT can 
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effectively decompose the initial signal into various oscillatory components, which originate from 

the translation and scaling of mother wavelets [12]. 

The CWT of a signal f(t) is calculated as shown in Eq. (1): 

 

𝐶𝑊𝑇(𝑎. 𝜏) = ∫ 𝑓(𝑡)
∞

−∞

∙ 𝜓∗ (
𝑡 − 𝜏

𝑎
) 𝑑𝑡                                                      (1) 

Where 𝑓(𝑡) is the input signal, 𝜓(𝑡) is the mother wavelet, 𝜓∗ is the complex conjugate of the mother 

wavelet, 𝜏 is the translation parameter, which shifts the wavelet function along the time axis to analyze 

different time points in the signal, and 𝑎 is the scale parameter, which controls the width of the 

wavelet function and determines the level of detail in the analysis.  

2.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) [13] is a class of deep learning neural networks primarily 

designed for processing structured grid data, such as images and video. It is inspired by the human 

visual system and is highly effective in tasks like image classification, object detection, and image 

segmentation. CNNs begin with one or more convolutional layers. These layers apply filters (also 

known as kernels) to the input image. Each filter is a small matrix that scans through the input using 

a mathematical operation called convolution. The convolution operation extracts features like edges, 

textures, or patterns from the input. Fig. 1 shows the schematic of a CNN containing convolution, 

pooling, and fully connected layers. 

 

Figure 1. Schematic of a CNN [14]. 

2.2.1 Inception Module 

The Inception architecture, a seminal advancement in deep convolutional neural networks 

(CNNs), represents a pivotal approach in neural network design, notable for its unparalleled capacity 

to capture intricate spatial features from multidimensional data. Introduced by Szegedy et al.[15], 

Inception tackles the challenge of effective feature extraction and dimensionality reduction. At its 

core, Inception employs multiple filter sizes and operations within a single layer. Unlike conventional 

layers with fixed-sized filters, Inception simultaneously uses various filter sizes to capture 

information at different spatial scales. This multi-scale approach helps in capturing both fine and 

coarse spatial details. In addition, Inception incorporates dimensionality reduction techniques like 

1x1 convolutions and pooling to reduce computational complexity while preserving essential 

features. Integrating the Inception architecture into the CNN branch enhances the model's ability to 

discern critical information efficiently and accurately. The schematic of the Inception model is shown 

in Fig. 2. 

 

Figure 2. Inception Module. 
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2.3 Long Short-Term Memory 

A Long Short-Term Memory (LSTM) [16] is a type of Recurrent Neural Network (RNN) 

architecture designed to handle sequential data and address the vanishing gradient problem that 

traditional RNNs often face. LSTMs are specifically designed for tasks involving data sequences, 

such as time series, natural language text, or speech. LSTMs maintain a cell state, which serves as a 

memory buffer. This cell state can carry information across time steps and selectively forget or update 

information, making it well-suited for capturing long-range dependencies in sequences. In addition 

to the cell state, LSTMs also maintain a hidden state. This hidden state serves as the memory that 

carries information to the next time step.  

3. Proposed Method 

3.1 Framework of the proposed method 

Due to their exposure to various operational stresses and environmental conditions, gearboxes 

are susceptible to faults. Effective fault diagnosis allows for the early detection and mitigation of 

these issues, preventing costly downtime and reducing maintenance expenses. This process is 

fundamental to ensuring machinery reliability and the uninterrupted flow of industrial operations. 

To prevent the above problems, in this study, we propose a new model for fault diagnosis of 

the gearbox, named the fusion CNN-LSTM model. This model consists of three main parts: the CNN 

model, the LSTM model, and classification layers. Fig. 3 reveals the schematic of the model. The 

detailed steps are as follows: 

1. Raw vibrational data are fed to an LSTM, analyzing the temporal dynamics within the 

vibrational data. LSTM is capable of capturing sequential dependencies and nuanced 

variations over time. 

2. In parallel with the LSTM, through CWT, original data are converted into images and 

fed to a CNN, extracting spatial features from the data and identifying distinctive 

patterns and spatial relationships that can aid in fault diagnosis. 

3. The outputs from the CNN and LSTM branches are combined. This feature stacking 

creates a comprehensive representation of the vibrational data, incorporating both 

spatial and temporal information. 

4. The integrated feature set is passed to a fully connected neural network for the 

classification task. The neural network determines whether the gearbox is operating 

normally or experiencing a fault based on the combined feature representation. 

5. The model's performance is evaluated using standard metrics such as accuracy, 

precision, recall, and F1-score. Cross-validation techniques are employed to assess the 

model's robustness and generalizability. 

 

 

Figure 3. The overall framework. 

3.2 LSTM Branch 

The LSTM branch begins with the input of vibrational data, a time-series sequence collected 

from the gearbox. This data is crucial for capturing the temporal dynamics of the system. Before 

feeding the data into the LSTM network, pre-processing steps such as normalization and sequence 
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length adjustment are applied to ensure data consistency and compatibility with the network. The 

core of the LSTM branch consists of one LSTM layer. As the data flows through the LSTM layer, 

the network analyses the sequential patterns and dependencies within the vibrational data. LSTM 

units have the unique ability to capture both short-term and long-term temporal dependencies, making 

them well-suited for time-series data like vibration signals.  

The LSTM branch produces either a sequence of hidden states or a summarization of the 

sequential analysis. Subsequently, an MLP layer is employed to project these hidden states into the 

desired dimensional space. The LSTM layer configuration remains consistent throughout the study, 

comprising a single hidden layer with 50 hidden states and yielding 60 output features. These specific 

parameter values were determined through an extensive grid hyperparameter search process. 

3.3 CNN Branch 

First, continuous wavelet transform is applied to the original vibrational data to reveal 

frequency-domain features. CWT enables the extraction of intricate temporal patterns, enhancing the 

model's ability to identify gearbox faults accurately by capturing subtle variations in the data. Wavelet 

functions in CWT serve as analysis tools, each representing a specific frequency and time domain. 

The choice of wavelet function impacts the scale at which features are detected. 

The Inception architecture is celebrated for its ability to extract spatial features from complex 

data efficiently. Therefore, it is used to extract meaningful features from vibrational data. The 

proposed method is shown in Fig. 4. Table 1 demonstrates the network details. After concatenating 

filters, Global Average Pooling (GAP) is applied to reduce dimensions. GAP acts as a form of spatial 

information summarization, producing a compact representation that retains essential features while 

significantly reducing computational complexity. This operation is particularly beneficial for model 

efficiency, regularization, and interpretability, making it a fundamental component in various 

computer vision tasks. 

                                                                             Table 1. Parameters in the CNN 

 
Seq. 
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input output  
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size 

paddin
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stride 

Branch1x1 

Conv. 

1×1 
1 10 1 0 1 

ReLU - - - - - 
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ReLU - - - - - 
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3×3 
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ReLU - - - - - 
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1×1 
1 10 1 0 1 
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ReLU - - - - - 

Pooling 

Branch 

MaxPo
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1 10 1 0 1 

ReLU - - - - - 

 

Figure 4. Proposed inception module. 
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3.4 Training and Optimization 

After stacking features extracted by CNN and LSTM branches, GPA is applied to reduce 

dimensions. The integrated feature representation is fed into a Fully Connected Neural Network 

(FCNN). This neural network is responsible for the final classification task, distinguishing between 

healthy and faulty gearbox conditions. The FCNN's architecture typically consists of multiple layers 

of neurons, allowing it to learn complex relationships within the combined feature set. The proposed 

model is trained on Gearbox Fault Diagnosis Data[17] collected in the National Renewable Energy 

Laboratory (NREL). This dataset includes examples of both healthy and broken tooth gearbox 

conditions, recorded under variation of load from '0' to '90' percent load, providing useful samples for 

training. The health condition of the gear has a remarkable impact on the vibrational characteristic of 

the gearbox. Fig. 5 shows a gear with broken teeth. During training, the network adjusts its internal 

parameters (weights and biases) through backpropagation and gradient descent to minimize the 

classification error. This phase is crucial for the model to learn to classify the data accurately. 

 

 

Figure 5. Gear with broken teeth. 

3.5 Performance Metrics 

The classification results are measured using performance metrics such as accuracy and F1-

score. Accuracy measures the proportion of correctly classified instances in a dataset, expressed as a 

percentage. It indicates how often the model's predictions are correct overall. The expression of 

accuracy is shown in Eq. (2). 

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                                                          (2) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives.  

The F1-score is a single value that balances precision (accuracy of positive predictions) and 

recall (ability to find all relevant positive instances). It provides a comprehensive performance 

measure. The formula of F1-score is shown in Eq. (3). 

F1 − score =
2 ⋅ (Precision ⋅ Recall)

Precision + Recall
                                             (3) 

where Precision is the ratio of true positive predictions to the total number of positive predictions 

made by the model, and Recall is the ratio of true positive predictions to the total number of actual 

positive instances in the dataset. 

4. Results 

In this paper, different window sizes for Continuous Wavelet Transform (CWT) have been 

tested, namely 17, 50, and 100. The results are presented below in Table 2 and Table 3. Based on the 

findings, the window size of 50 yielded the most favorable outcomes in the CNN-LSTM model. It is 
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noticeable that the separate CNN model has the best performance with a window size of 17. But when 

combined with LSTM, our proposed method, the window size of 50, yields the best performance.  

 

Table 2. CNN Model Results 

window size f1-score  support 

17 0.98 880 

50 0.94 880 

100 0.35 880 

Table 3. CNN-LSTM Model Results 

window size f1-score  support 

17 0.98 880 

50 1 880 

100 0.41 880 

The remaining model parameters were fine-tuned using a small grid hyperparameter search 

method[18, 19]. Further details regarding the specific hyperparameters and their ranges can be found 

in the referenced sources. The final diagnosis results of the model are presented in Table 4.  It can be 

seen that this method has a remarkable performance. 

Table 4. Final results for window size=50  

 precision recall f1-score support 

Faulty 1 1 1 880 

Healthy 1 1 1 880 

 

accuracy - - 1 1760 

macro avg. 1 1 1 1760 

weighted avg. 1 1 1 1760 

        

To demonstrate the enhancement of this method, it is compared with each of its branches 

separately as a model. It can be seen that the f1-score of the CNN model and LSTM model is 0.94 

and 0.98. But when their features are stacked together, as this paper proposes, it would rise to 1. This 

comparison is shown in Table 5.  

Table 5. Comparison of the proposed model 

Model f1-score  support 

CNN 0.94 880 

LSTM 0.98 880 

CNN-LSTM 1 880 

5. Conclusions  

In this study, we have presented an innovative approach for enhancing gearbox fault diagnosis 

by integrating LSTM networks and CNNs. Our research aimed to leverage the strengths of these 

architectures to provide a comprehensive and accurate analysis of vibrational data, ultimately 

advancing the state-of-the-art in machinery condition monitoring. Through the integration of LSTM 

and CNN, we achieved exceptional accuracy in identifying gearbox faults, even in the early stages of 

their development. The fusion of spatial and temporal insights provided by these two architectures 

created a holistic feature representation that enhanced our model's fault detection capabilities. Our 

methodology, which included Continuous Wavelet Transform (CWT) for frequency-domain feature 

extraction and the Inception architecture for spatial feature extraction, showcased its robustness and 

generalizability through rigorous evaluation and cross-validation. We demonstrated the model's 

effectiveness in real-world scenarios, where early fault detection proved instrumental in reducing 

downtime and operational costs. 
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As we look to the future, further exploration of hybrid deep learning approaches, like the one 

presented here, holds promise in addressing complex industrial challenges. We anticipate that our 

research will inspire continued innovation in predictive maintenance strategies and foster 

collaboration between the fields of machine learning and industrial engineering. Ultimately, this work 

contributes to the goal of achieving greater efficiency, reliability, and sustainability in industrial 

operations. 
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