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Abstract 

The vortex flow meter is widely employed within the industry as one of the primary flow 

measurement devices. It operates on the principle of vortex shedding. One of the primary  

challenges in the design and development of this flow meter lies in the design of the vortex 

shedder. The vortex shedder must generate strong vortices to enable accurate sensor detection. 

Given the necessity for extensive experiments and computational fluid dynamics (CFD)  

analysis in the design of new bluff bodies, this process is both time-consuming and expensive. 

To address this issue, we employ machine learning (ML) models for the development of new 

vortex flow meters. We have developed two ML models that aid in the design of new bluff 

bodies based on deep learning (DL) architectures. These models were trained on both a fully 

connected deep neural network (DNN) and a convolutional neural network (CNN) architecture, 

yielding comparable performance. To facilitate model training, we compiled a comprehensive 

dataset from existing literature, paying particular attention to the symmetrical profiles of bluff 

bodies. The dataset exclusively contains point coordinates (X, Y) from the right half of the 

bluff body's cross-section, this consideration leads to more smooth generated shape. The first 

model was designed to generate new bluff body geometries based on input parameters such as 

Reynolds number, Strouhal number, and other geometric parameters. The second model  

focused on predicting the linearity of Strouhal numbers for these generated shapes. The models 

demonstrated an error rate of approximately 2.80% in the validation phase. These results  

indicate the potential utility of this approach in the initial phases of bluff body design. 

Keywords: Vortex flow meter; Vortex shedder; Deep learning; Shape Optimization.  

1. Introduction 

Vortex flowmeters stand as one of the most extensively employed flow measurement devices 

in various industrial applications. Operating on the principle of vortex shedding, these meters harness 
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the disruptive influence of a bluff body placed within a flowing fluid, giving rise to a rhythmic  

shedding of vortices downstream of the body (Fig. 1). The frequency at which these vortices are shed 

correlates directly with the flow velocity. Crucial to the efficacy of vortex flowmeters are the produc-

tion of Strong vortices by the vortex shedder. 

One of the principal challenges encountered in the development of vortex flowmeters centers 

on the design of this essential vortex shedder component. Complicating matters further, many  

established bluff body shapes are subject to copyright restrictions, necessitating the exploration of 

novel bluff body designs for the advancement of vortex flow measurement technology. The design 

of an effective vortex shedder is a complex process that requires a deep understanding of fluid  

dynamics, extensive experimentation, and often computational fluid dynamics (CFD) analysis. These 

endeavors, while indispensable, can be very time-consuming and financially burdensome.  

Recent years have witnessed the emergence of Machine Learning (ML) as an influential  

presence in engineering disciplines. Within the domain of fluid dynamics, ML has demonstrated its 

capabilities in the study of turbulence [1], [2], [3], flow control [4],[5], flow simulation using deep 

learning models [6], prediction of vortex-induced vibrations [7], [8], and the accurate prediction of 

fluid field characteristics [9]. Notably, the geometric configuration of the bluff body profoundly  

influences the performance of vortex flow meters. An ideal bluff body should incite a strong flow  

fluctuations over a broad range of Reynolds numbers [10].  

In pursuit of optimal shapes, previous research has made substantial efforts. Igarashi [11], for 

instance, scrutinized the vortex-shedding characteristics of six bluff bodies with diverse  

cross-sectional shapes, pinpointing the superiority of a circular cylinder with a slit in enhancing  

vortex strength. Bently and Nichols [12] proposed a dual bluff body arrangements to enhance the 

quality of vortex-shedding signals. Venugopal et al. [10] conducted experimental investigations into 

various bluff bodies with distinct forebody and afterbody shapes, ultimately endorsing the trapezoidal 

bluff body as the most suitable configuration, grounded in its constancy within the St–Re relationship. 

Miau et al. [13] took an innovative approach, employing a trapezoidal T-shaped body as a vortex 

shedder, showcasing improvements in vortex shedding stabilization and the linearity of the St–Re 

relationship, credited to the optimal length of the extended plate. However, many of these optimal 

shapes, while theoretically compelling, are geometrically intricate and face practical constraints on 

manufacturability, economics, and reliability.  

In a notable stride towards overcoming these challenges, D. Thummar [14] employed machine 

learning techniques to design innovative bluff bodies for vortex flow meters, offering a potential 

solution to this longstanding conundrum. Building upon this foundation, our work endeavors to  

leverage deep learning methodologies to expedite the bluff body design process.  

This article is structured as follows: we commence with a detailed discussion of the steps  

involved in data collection within the Deep Learning section, followed by an exploration of the  

fundamental principles underpinning deep learning architectures. Subsequently, we delve into the 

specifics of training models and validate the results through the utilization of CFD simulations. 

 

 

Figure 1: Vortex shedding of a bluff body. 
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2. Deep Learning Approach  

One critical facet of developing a supervised machine learning algorithm is the quality of the 

data it relies upon. In this section, we will delve into the intricate process of data gathering, followed 

by an exploration of the fundamental concepts within Artificial Neural Networks (ANNs).  

Specifically, we will elucidate the architectures of Deep Neural Networks (DNNs) and Convolutional 

Neural Networks (CNNs) for a comprehensive understanding. 

2.1 Data Collection 

The quality of collected data is very critical in developing DL models. Hence, we tried to collect 

a robust dataset for this task. bluff bodies with various shapes have been designed and evaluated in 

the literature. The dataset used in this study is gathered from data that has been recorded in the  

literature for years.  

Influential parameters like Re, St, blockage ratio, Aspect ratio, and shape of the bluff body are 

selected as features of the dataset. Positions on the bluff body cross-section premier represent bluff 

body shape. To Study the effect of the number of shape data on DL models we select two sets of data. 

The first dataset (dataset 1) has 13 (X, Y) positions in the bluff body cross-section and the second 

(dataset 2) has 41. Other features are the same in both datasets.  

The bluff body shape data was obtained by discretizing the right half of the bluff body shape in 

CAD software and the geometric center of shape was selected as the origin as shown in Fig. 2.  

Blockage Ratio (d/D) gives information about pipe diameter (D) compared to bluff body size. The 

aspect ratio is used to inform the size of the slit in the bluff body (s/d) and the length of the bluff body 

(l/d). Re and St are the features that give information about fluid flow characteristics. To obtain fluid 

flow characteristics (Re, St) from plots in literature we used an image digitization software.  

Information about bluff body features is in Table 1. With this set of features, we gathered  

datasets 1 and dataset 2 with 31 and 87 features respectively. Both datasets have 285 data points.  

Each dataset contains all the needed features to train both models. One can split data, column-wise, 

in input and output for both models.   

 

 

Figure 2: Detail on bluff body discretization. 

Model 1 is trained to generate new bluff body geometries. The inputs of this model are Re, St, 

Blockage ratio, and aspect ratio. In the output, it gives the bluff body geometry estimate for a set of 

inputs. It contains 13 points (or 41 for models trained on dataset 2) which is the right half of the 

predicted bluff body shape. Due to symmetry, these points can easily be used to draw the left half. 

Model 2 input is bluff body predicted shape, Re, blockage ratio, and aspect ratio and estimate 

the Strouhal number for the given shape and the parameters used to generate the shape. This model 

can also be used to check linearity in St for any range of Reynolds. To create an accurate ML model, 

all features should be small with low variance. Reynolds number has a high range in the datasets and 

can lead to low accuracy in models. Hence, the Reynolds number was normalized after creating  

datasets. To normalize data one can use Eq. (1). 

     𝒙′ =
𝒙 − 𝜇

𝜎
 (1) 

 
d/2 

L 
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Where  𝒙′ is the normalized feature Vector, 𝒙 is the input vector, 𝜇 is the feature mean and the 

𝜎 is the standard deviation input. To train both models, datasets were divided into sets of 80% and 

20% for training and test datasets respectively. 

 

Table 1:  Details on data resources and dataset. 

Bluff body 

shape 

 

 
Circle 

 

 
Triangle 

 

 
Circle with slit 

 

 
Trapezoidal 

 

 
T-Shaped 

Author Venugopal et al.[14] Zhang et al.[15] Peng et al.[16] 
Venugopal et 

al.[14],[17] 
Miau et al.[13] 

Re range 500-400000 100000-300000 2000-15000 500-150000 2000-20000 

St range 0.2-0.45 0.2-0.5 0.2-0.27 0.1-0.38 0.065-0.222 

Geometrical 

parameters 
d/D = 0.14-0.25, 

θ = 60○, 

d/D =0.2-0.38 

s/d=0-0.3, 

d/D=0.1 

l/d=1.25, 

d/D=0.14-0.28 

d=32 mm, 

a=3mm, 

b=10mm, 

l/d=0-3.13, 

d/D=0.2703 

No. data 

points 
80 24 47 99 35 

 

2.2 Artificial neural network details 

Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) are powerful 

machine learning tools. These networks are capable of learning complex patterns and relationships in 

data, making them particularly valuable for nonlinear regression tasks. In a DNN we have an input 

layer, some hidden layers, and an output layer as shown in Fig. 3. A hidden layer is connected to its 

previous layer with a set of weights. The mathematical equation for hidden layers is in Eq. (2) [18].  

     𝒉 = 𝑔(𝑾𝑇𝒙 + 𝑏) (2) 

Where 𝒙 is the input vector, W is the weight matrix, 𝑏 is the bias, 𝒉 is the output vector, and 𝑔 is the 

activation function. To introduce nonlinearity in a neural network we should use a nonlinear  

activation function. A common activation function for hidden layers is the Rectified Linear Unit 

(ReLU). ReLU is defined as 𝑔(𝑧) = max(0, z). We used the ReLU activation function for training 

all models. In all models, Mean square error (MSE) was used as the loss function. It is shown in Eq. 

(3). 

     𝑀𝑆𝐸 𝑙𝑜𝑠𝑠 = 𝔼 (||𝒚 − 𝑓(𝒙)||
2

) (3) 

Where 𝒙 is the input, 𝑓(𝒙) the is neural network prediction, and 𝒚 is the input true value.  

A CNN consists of several convolution layers after the input layer. The output of the convolu-

tion layers then goes to the hidden layers. The last layer is the output. A schematic of the CNN is in 

Fig. 4. When we use a kernel for the convolution layer, we need to know the length of the output 

vector after applying this kernel. We can calculate it by using eq. (4).  
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Where 𝐿𝑖𝑛 is the input vectors length. Padding, stride, and dilation are the features of the kernel 

of the convolution layer. 

 Both models were trained on a DNN and a CNN to compare architectures. For training models, 

Adam optimization algorithm was employed that is a gradient-based optimization algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3  Artificial neural network training process 

For building and training neural networks we used the PyTorch library. Dropout regularization 

has been used for models to overcome the overfitting issue. Some models' performance was better 

with dropout. K-fold cross-validation and trial-and-error approach have been employed to find the 

best hyperparameters for each model. ReLU activation function used to train all models. The Mean 

square Error has been set as the loss function. Adams optimization algorithm has been used to  

optimize models’ weight. 

Model 1 with dataset 2 has an input layer, four hidden layers, and an output layer. The input 

layer accepts vectors of length five, which are L/d, d/D, Re, St, s/d in order. The number of neurons 

in the hidden layer one through five is 45, 125, 450, and 180 in order. A dropout layer with probability 

of 15% has been used for all hidden layers. The output layer size is 82, which are the points in the 

generated shape. The first 41 numbers are X positions, and the last 41 numbers are Y positions. 

Model 2-CNN with dataset 2 has three convolution layers, eight hidden layers, and an output 

layer. All convolution layers use the kernel size of 5, padding of 2, and stride equal to 2. The number 

of Output channels for layers one to three are 15, 45, and 80. The number of neurons in hidden layers 

are 950, 1300, 1800, 1000, 400, 230, and 100 in order. Dropout layer with the probability of 30% has 

been used for all hidden layers. The learning rate for training models is in Table 2.  

 

 

     𝐿𝑜𝑢𝑡 = 𝑓𝑙𝑜𝑜𝑟 [
𝐿𝑖𝑛 + 2 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 (𝐾𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 − 1) − 1

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1] (4) 

Figure 3:Deep neural network architecture. 

Figure 4:Convolutional neural network architecture. 
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Table 2:The learning rate of optimizer for trained models. 

 
Model 1 

Dataset 1 

Model 1 

Dataset 2 

Model 1-CNN 

Dataset 1 

Model 1-CNN 

Dataset 2 

Model 2 

Dataset 1 

Model 2 

Dataset 2 

Model 2-CNN 

Dataset 1 

Model 2-CNN 

Dataset 2 

Learning 

rate 
0.001 0.01 0.001 0.01 0.01 0.001 0.002 0.001 

3. Results and discussions 

After creating dataset, we will train DL models on these datasets and use these models to get a 

vortex shedder and evaluate its optimality. Then we will use simulation to validate models output.   

3.1  Training Deep Learning models 

Models were created and optimized with the PyTorch library. The value of the loss function for 

both the test and train datasets are in Table 3. The loss values shows that all models are converged 

and overfit was not occur. The value of the loss function per iteration for training Model 1 and Model 

2 are shown in Fig. 5 and Fig. 6 respectively. 

Table 3: Loss value in the last iteration of training models. 

 
Model 1 

Dataset 1 

Model 1 

Dataset 2 

Model 1-CNN 

Dataset 1 

Model 1-CNN 

Dataset 2 

Model 2 

Dataset 1 

Model 2 

Dataset 2 

Model 2-CNN 

Dataset 1 

Model 2-CNN 

Dataset 2 

Train 

loss 
2.06e-4 3.11e-4 1.09e-4 6.63e-5 1.30e-4 9.15e-5 9.63e-5 1.50e-4 

Test loss 1.72e4 1.17e-4 1.00e-4 7.17e-5 1.68e-4 1.29e-4 1.29e-4 1.78e-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Deep Learning models robustness 

We collected two datasets to see how sensitive are the models with several geometric points. 

To check the robustness, we give Model 1 in all 4 cases the same input to generate a bluff body shape. 

Generated Bluff body shapes are depicted in Fig. 7. All shapes are very similar that shows the data 

collection approach was suitable. Considering symmetry in the data collection phase helped to 

Figure 5: MSE Loss Vs iteration for a) Model 1- dataset 1, b) Model 1- dataset 2, c) 

Model 1-CNN dataset 1, d) Model 1-CNN dataset 2. 

(a) (b) 

(c) (d) 
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achieve this robustness. It’s expected that the models trained with more data generate more accurate 

shapes. 

3.3 Vortex shedder optimization for linearity 

An optimized bluff body will have a low standard deviation in a large range of Reynolds. When 

we use a Machine learning model to obtain these shapes, another consideration is how the predicted 

shape is interpretable and one can draw the shape without any guess about it. We used the first Model 

to generate an optimized bluff body shape with different Reynolds and different shape features. Since 

Model 1 trained in dataset 2 generated shapes seem to be more accurate, we used this model to gen-

erate new shapes. The shape depicted in Fig. 7.c was selected as an optimal new shape. After that 

Model 2 was employed to predict Strouhal number and its linearity on this shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the linearity of the Strouhal number, we used Model 2 to predict St for two Reynolds 

numbers. The results are  shown in Table 4. Since ML models are not aware of physical laws, we need 

simulation to verify the models’ output. Although simulation doesn’t guarantee all future predictions 

of models it just shows that some models’ outputs are valid.  

 

Table 4: Strouhal number prediction with Model 2 for the selected shape. 

 

 

 

 

 

 

 

 

 

 

 
Model 2 

dataset 2 

Model 2-CNN 

dataset 2 

Re = 80,000 0.2689 0.2604 

Re=100,000 0..2690 0.2612 

Figure 6: MSE Loss Vs. iteration for a) Model 2- dataset 1, b) Model 2- dataset 2, c) 

Model 2-CNN dataset 1, d) Model 2-CNN dataset 2. 

(b) 

(c) (d) 

(a) 
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3.4 Validation with CFD simulation 

To validate ML models, we need CFD simulation on predicted shapes. A CFD simulation has 

been done for both cases in Table 4. We used FLUENT software for CFD simulation. The simulation 

has been done for a 2-D, unsteady condition. We considered the bluff body in a 0.1-meter pipe, and 

the generated bluff body shape scaled to the d/D ratio. The maximum width of the scaled shape is 

about 0.028 meters. The flow input is 0.5 meters before the bluff body, and the output is 1.5 meters 

after that. Water is used as fluid for simulation. The fluid is assumed to be incompressible with  

constant properties. To modeling turbulence, 𝑘 − 𝜔(𝑆𝑆𝑇) turbulence model has been used. The PISO 

algorithm was used as the Pressure-Velocity Coupling Method. To calculate the velocity of flow we 

can use the Reynolds number formula in Eq. (5). 

     𝑅𝑒 =
𝑣. 𝐷. 𝜌

𝜇
 (5) 

Where 𝑣 is the fluid mean velocity, D is the pipe diameter, 𝜌 is the fluid density, and 𝜇 is the 

fluid dynamic viscosity. 

We used a mesh with about 10000 elements for simulation. The simulation time step was the 

fixed value of 0.001 seconds.   With about ten times increase in the number of elements, there was 

only a 1% change in results. So, the results were converged. Fluctuation in the Lift coefficient was 

used to obtain the Strouhal number. To calculate St one can use Eq. (6). 

     𝑆𝑡 =
𝑓. 𝑑

𝑣
 (6) 

Where 𝑑 is the vortex shedder maximum width, and 𝑓 is the vortex shedding frequency. The 

Fast Fourier Transform (FFT) of the lift coefficient signal for both cases are shown in Fig. 8. With 

these results and eq. (6) one can calculate St in both conditions. The comparison of DL models  

predicted St with the real one is in Table 5. The results show that the trained models’ prediction is 

accurate. The model with CNN Architecture approximates the St value better than the other model.  

 

Figure 7: Predicted shape with Re=100000, St= 0.3, l/d=0.2, 

d/D=0.25, s/d=0 as input parameters, with a) Model 1 - dataset1, b) 

Model 1-CNN dataset 1, c) Model 1 - dataset 2, d) Model 1-CNN da-

taset 2. 

(a) (b) 

(c) (d) 
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Table 5: Comparison of simulation results with ML outputs. 

 St-CFD St-Model 2 Model 2 Error St-Model 2-CNN Model 2-CNN Error 

Re = 80,000 0.2543 0.2689 5.74% 0.2604 2.40% 

Re = 100,000 0.2557 0.2690 5.20% 0.2612 2.15% 

3.5 Discussion 

The Predicted shape in Fig. 7.c is used to validate DL models. To validate models a CFD  

the simulation was done for the predicted bluff body. The results of the simulation are shown in Table 

5. According to simulation results shown in Table 5, these models can accelerate the early phase of 

vortex shedder design. Implementing them in the design process it can reduce parametric design time. 

These results suggest that ML-based approaches have the potential to significantly accelerate the 

design and development of vortex flowmeters. ML models can be used to screen a large number of 

potential bluff body designs quickly and efficiently. This can help engineers identify promising  

designs that can then be further evaluated using CFD or experimental methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

In this work, we implemented a deep learning method to estimate new optimized shapes for 

vortex shedders. Two DL models were trained for that. The first model predicted a vortex shedder 

shape based on Re, St, and geometry parameters as the inputs. The second model uses the predicted 

shape in model 1, Re, and geometry parameters. Its output is the Strouhal number. Model 2 was used 

to estimate the generated shape optimality. Model 1 trained on dataset 2 generate more smooth shapes. 

Model 2 trained on dataset 2 predicts Strouhal number of a generated shape more accurately. It was 

shown that using Convolution layers improves the accuracy of Model 2.  

To validate the DL models, a CFD simulation has been done for an optimal generated shape. 

The results show that DNN and CNN model errors are below 5.8% and 2.4% respectively. So, we 

can use these models to design new optimal vortex shedders. This can reduce the time for  

developing new vortex shedders by decreasing the number of simulations for obtaining an optimized 

shape. 
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